-16t^2+140t-30=0

Simple and best practice solution for -16t^2+140t-30=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+140t-30=0 equation:



-16t^2+140t-30=0
a = -16; b = 140; c = -30;
Δ = b2-4ac
Δ = 1402-4·(-16)·(-30)
Δ = 17680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17680}=\sqrt{16*1105}=\sqrt{16}*\sqrt{1105}=4\sqrt{1105}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-4\sqrt{1105}}{2*-16}=\frac{-140-4\sqrt{1105}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+4\sqrt{1105}}{2*-16}=\frac{-140+4\sqrt{1105}}{-32} $

See similar equations:

| 4x^{2}+12x=35 | | 0=2x2+16x–9 | | 6=a/4=+2 | | -13+3x=39+17x | | 5*(3+x)=15+45 | | x-4-2=8-1(9+x) | | 5a=3-2a | | 12+(6x)=72 | | 2x+3(-5x-13)=-130 | | (a)+(a+2)+(a+3)=72 | | -9+5t=6t | | x+7=x+125 | | 1/4x+x=-3+1/2=x | | (a+1)+(a+2)+(a+3)=72 | | 14x^2(-1=0 | | -4(-7-5x)=188 | | 59+12x=500 | | 7z+30=16 | | 7(4x-1)-2=61 | | 2(3x-5)=4(2x-6) | | 1+2t=4 | | (4-5y)+15y=-1 | | 4(3x+1)=2(5x+7) | | 28x-7-2=61 | | xx7=331 | | O.75x-100=80 | | -1/5d=-20 | | 13x-6+4x=4-3x+15 | | 7(x+3)=8(x+4) | | 54=3x-21 | | 4(3x+4)+10=74 | | 5-11x=7(5–2x) |

Equations solver categories